o

DecisionPolicyNN 

Companion class DecisionPolicyNN

object DecisionPolicyNN

Linear Supertypes
AnyRef, Any
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. DecisionPolicyNN
2. AnyRef
3. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

Value Members

1. final def !=(arg0: Any): Boolean
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any): Boolean
Definition Classes
AnyRef → Any
4. def apply[T, U](nnIndex: Index[T, U], kNN: Double)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicy[T, U]

Create an approximate decision policy from an index, using the supplied kNN.

Create an approximate decision policy from an index, using the supplied kNN. This uses the default combination function (unweighted maximum).

5. def apply[T, U](policy: Map[(T, U), DecisionSample], kNN: Double = .01)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicy[T, U]

Create an approximate decision policy from a Map of (parent, decision) tuples to a DecisionSample, using the supplied kNN.

Create an approximate decision policy from a Map of (parent, decision) tuples to a DecisionSample, using the supplied kNN. This uses the default combination function (unweighted maximum) and index (VP-Tree).

6. def apply[T, U](Alg: DecisionAlgorithm[T, U], kNN: Double)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicy[T, U]

Create an approximate decision policy from a DecisionAlgorithm, using the supplied kNN.

Create an approximate decision policy from a DecisionAlgorithm, using the supplied kNN. This uses the default combination function (unweighted maximum) and index (VP-Tree).

7. def apply[T, U](nnIndex: Index[T, U], combineFcn: (List[(Double, U, DecisionSample)]) ⇒ (U, Double), kNN: Double)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicyNN[T, U]

Create an approximate decision policy from an index, using the supplied combination function and kNN.

8. def apply[T, U](policy: Map[(T, U), DecisionSample], combineFcn: (List[(Double, U, DecisionSample)]) ⇒ (U, Double), kNN: Double)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicyNN[T, U]

Create an approximate decision policy from a Map of (parent, decision) tuples to a DecisionSample, using the supplied combination function and kNN.

Create an approximate decision policy from a Map of (parent, decision) tuples to a DecisionSample, using the supplied combination function and kNN. This uses the default index (VP-Tree).

9. def apply[T, U](Alg: DecisionAlgorithm[T, U], combineFcn: (List[(Double, U, DecisionSample)]) ⇒ (U, Double), kNN: Double)(implicit arg0: (T) ⇒ Distance[T]): DecisionPolicyNN[T, U]

Create an approximate decision policy from a DecisionAlgorithm, using the supplied combination function and kNN.

Create an approximate decision policy from a DecisionAlgorithm, using the supplied combination function and kNN. This uses the default index (VP-Tree).

10. final def asInstanceOf[T0]: T0
Definition Classes
Any
11. def clone(): AnyRef
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
12. final def eq(arg0: AnyRef): Boolean
Definition Classes
AnyRef
13. def equals(arg0: Any): Boolean
Definition Classes
AnyRef → Any
14. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
15. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
16. def hashCode(): Int
Definition Classes
AnyRef → Any
17. final def isInstanceOf[T0]: Boolean
Definition Classes
Any
18. final def ne(arg0: AnyRef): Boolean
Definition Classes
AnyRef
19. final def notify(): Unit
Definition Classes
AnyRef
20. final def notifyAll(): Unit
Definition Classes
AnyRef
21. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
22. def toString(): String
Definition Classes
AnyRef → Any
23. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
24. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
25. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )