class DecisionPolicyNN[T, U] extends DecisionPolicy[T, U]

A nearest neighbor decision policy. This policy computes an approximate decision from a sampling algorithm. The input to the class is an index (which holds (parent, decision) samples) a function that will combine a set of (decision, utility) samples into a single decision, and numNNSamples, the number of samples to use in a nearest neighbor algorithm. By default, this uses a VP-tree to store the samples.

Linear Supertypes
DecisionPolicy[T, U], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DecisionPolicyNN
  2. DecisionPolicy
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DecisionPolicyNN(D: Index[T, U], combineFcn: (List[(Double, U, DecisionSample)]) ⇒ (U, Double), numNNSamples: Double)(implicit arg0: (T) ⇒ Distance[T])

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  10. def getNumNNSamples: Int

    Returns the number of nearest neighbors to use.

    Returns the number of nearest neighbors to use. If kNN is greater than 1, then return kNN. If kNN is less than 1, then return kNN* Number of Samples.

  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  14. final def notify(): Unit
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  16. var numNNSamples: Double
    Attributes
    protected
  17. def setNumNNSamples(i: Double): Unit

    Set the number of nearest neighbor samples to use in policies based on nearest neighbor.

  18. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  19. def toFcn(): (T) ⇒ Element[U]

    The function that returns a decision (Element[U]) given the value of the parent T.

    The function that returns a decision (Element[U]) given the value of the parent T.

    Definition Classes
    DecisionPolicyNNDecisionPolicy
  20. def toString(): String
    Definition Classes
    AnyRef → Any
  21. def toUtility(): (T) ⇒ Element[Double]

    The function that returns the expected utility (Element[Double]) given the value of the parent T.

    The function that returns the expected utility (Element[Double]) given the value of the parent T.

    Definition Classes
    DecisionPolicyNNDecisionPolicy
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from DecisionPolicy[T, U]

Inherited from AnyRef

Inherited from Any

Ungrouped