trait Cached extends SimpleBlockSampler

Caches factors according to assignments of values in the Markov blanket, which avoids recomputing the same factors repeatedly Takes advantage of the fact in Gibbs sampling, nearby samples tend to be highly correlated

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Cached
  2. SimpleBlockSampler
  3. BlockSampler
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val adjacentFactors: List[Factor[Double]]
    Definition Classes
    BlockSampler
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. val block: Block
    Definition Classes
    BlockSampler
  7. val blockInfo: BlockInfo
    Definition Classes
    BlockSampler
  8. lazy val cache: Map[List[Int], Factor[Double]]
  9. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def computeSamplingFactor(currentSamples: Map[Variable[_], Int]): Factor[Double]
    Definition Classes
    SimpleBlockSampler
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  15. def getSamplingFactor(currentSamples: Map[Variable[_], Int]): Factor[Double]

    Get the factor from which to sample this block Returns a non-logarithmic factor

    Get the factor from which to sample this block Returns a non-logarithmic factor

    Definition Classes
    CachedSimpleBlockSamplerBlockSampler
  16. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  17. val indexMap: Map[Variable[_], Int]
    Definition Classes
    SimpleBlockSampler
  18. val indices: Indices
    Definition Classes
    SimpleBlockSampler
  19. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  20. lazy val markovBlanket: List[Variable[_]]
  21. lazy val maxSize: Int
  22. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  23. def normalizeFactor(factor: Factor[Double]): Factor[Double]

    Normalize a factor so its weights sum to 1 Takes a logarithmic factor and returns a non-logarithmic factor

    Normalize a factor so its weights sum to 1 Takes a logarithmic factor and returns a non-logarithmic factor

    Definition Classes
    SimpleBlockSampler
  24. final def notify(): Unit
    Definition Classes
    AnyRef
  25. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  26. def sample(currentSamples: Map[Variable[_], Int]): Unit

    Sample this block once

    Sample this block once

    Definition Classes
    BlockSampler
  27. def sampleFactor(factor: Factor[Double]): List[Int]

    Select a set of indices in the factor according to the weights in the factor Works on a non-logarithmic factor

    Select a set of indices in the factor according to the weights in the factor Works on a non-logarithmic factor

    Definition Classes
    BlockSampler
  28. val semiring: LogSumProductSemiring
    Definition Classes
    SimpleBlockSampler
  29. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  30. def toString(): String
    Definition Classes
    AnyRef → Any
  31. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from SimpleBlockSampler

Inherited from BlockSampler

Inherited from AnyRef

Inherited from Any

Ungrouped