object Gibbs

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Gibbs
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type Block = List[Variable[_]]
  2. type BlockInfo = (Block, List[Factor[Double]])
  3. type BlockSamplerCreator = (BlockInfo) ⇒ BlockSampler

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) ⇒ () ⇒ Double, burnIn: Int, interval: Int, blockToSampler: BlockSamplerCreator, targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with AnytimeProbQuerySampler with ChainApplyBlockingGibbs

    Create an anytime Gibbs sampler using the given dependent universes and algorithm, the number of samples to burn in, the sampling interval, the BlockSampler generator, and target elements.

  5. def apply(burnIn: Int, interval: Int, blockToSampler: BlockSamplerCreator, targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with AnytimeProbQuerySampler with ChainApplyBlockingGibbs

    Create an anytime Gibbs sampler using the given number of samples to burn in, the sampling interval, the BlockSampler generator, and target elements.

  6. def apply(targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with AnytimeProbQuerySampler with ChainApplyBlockingGibbs

    Create an anytime Gibbs sampler using the given target elements.

  7. def apply(dependentUniverses: List[(Universe, List[NamedEvidence[_]])], dependentAlgorithm: (Universe, List[NamedEvidence[_]]) ⇒ () ⇒ Double, mySamples: Int, burnIn: Int, interval: Int, blockToSampler: BlockSamplerCreator, targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with OneTimeProbQuerySampler with ChainApplyBlockingGibbs

    Create a one-time Gibbs sampler using the given dependent universes and algorithm, the number of samples, the number of samples to burn in, the sampling interval, the BlockSampler generator, and target elements.

  8. def apply(mySamples: Int, burnIn: Int, interval: Int, blockToSampler: BlockSamplerCreator, targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with OneTimeProbQuerySampler with ChainApplyBlockingGibbs

    Create a one-time Gibbs sampler using the given number of samples, the number of samples to burn in, the sampling interval, the BlockSampler generator, and target elements.

  9. def apply(mySamples: Int, targets: Element[_]*)(implicit universe: Universe): ProbQueryGibbs with OneTimeProbQuerySampler with ChainApplyBlockingGibbs

    Create a one-time Gibbs sampler using the given number of samples and target elements.

  10. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  11. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  19. final def notify(): Unit
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  21. def probability[T](target: Element[T], value: T): Double

    Use Gibbs sampling to compute the probability that the given element has the given value.

  22. def probability[T](target: Element[T], predicate: (T) ⇒ Boolean): Double

    Use Gibbs sampling to compute the probability that the given element satisfies the given predicate.

  23. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  24. def toString(): String
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped