t

# ExpectationMaximization 

#### trait ExpectationMaximization extends Algorithm with ParameterLearner

Expectation maximization iteratively produces an estimate of sufficient statistics for learnable parameters, then maximizes the parameters according to the estimate. This trait can be extended with a different expectation or maximization algorithm; see the code for details.

Linear Supertypes
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. ExpectationMaximization
2. ParameterLearner
3. Algorithm
4. AnyRef
5. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Abstract Value Members

1. abstract def doExpectationStep(): Map[Parameter[_], Seq[Double]]
Attributes
protected
2. abstract val targetParameters: Seq[Parameter[_]]
3. abstract val terminationCriteria: () ⇒ EMTerminationCriteria

### Concrete Value Members

1. final def !=(arg0: Any): Boolean
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any): Boolean
Definition Classes
AnyRef → Any
4. val active: Boolean
Attributes
protected
Definition Classes
Algorithm
5. final def asInstanceOf[T0]: T0
Definition Classes
Any
6. def cleanUp(): Unit

Called when the algorithm is killed.

Called when the algorithm is killed. By default, does nothing. Can be overridden.

Definition Classes
Algorithm
7. def clone(): AnyRef
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
8. val debug: Boolean
9. def doKill(): Unit
Attributes
protected[com.cra.figaro.algorithm]
Definition Classes
ExpectationMaximizationAlgorithm
10. def doMaximizationStep(parameterMapping: Map[Parameter[_], Seq[Double]]): Unit
Attributes
protected
11. def doResume(): Unit
Attributes
protected[com.cra.figaro.algorithm]
Definition Classes
ExpectationMaximizationAlgorithm
12. def doStart(): Unit
Attributes
protected[com.cra.figaro.algorithm]
Definition Classes
ExpectationMaximizationAlgorithm
13. def doStop(): Unit
Attributes
protected[com.cra.figaro.algorithm]
Definition Classes
ExpectationMaximizationAlgorithm
14. def em(): Unit
Attributes
protected
15. final def eq(arg0: AnyRef): Boolean
Definition Classes
AnyRef
16. def equals(arg0: Any): Boolean
Definition Classes
AnyRef → Any
17. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
18. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
19. def hashCode(): Int
Definition Classes
AnyRef → Any
20. def initialize(): Unit

Called when the algorithm is started before running any steps.

Called when the algorithm is started before running any steps. By default, does nothing. Can be overridden.

Definition Classes
Algorithm
21. def isActive: Boolean
Definition Classes
Algorithm
22. final def isInstanceOf[T0]: Boolean
Definition Classes
Any
23. def iteration(): Unit
24. def kill(): Unit

Kill the algorithm so that it is inactive.

Kill the algorithm so that it is inactive. It will no longer be able to provide answers.Throws AlgorithmInactiveException if the algorithm is not active.

Definition Classes
Algorithm
25. final def ne(arg0: AnyRef): Boolean
Definition Classes
AnyRef
26. final def notify(): Unit
Definition Classes
AnyRef
27. final def notifyAll(): Unit
Definition Classes
AnyRef
28. val paramMap: Map[Parameter[_], Seq[Double]]
Attributes
protected
29. def resume(): Unit

Resume the computation of the algorithm, if it has been stopped.

Resume the computation of the algorithm, if it has been stopped. Throws AlgorithmInactiveException if the algorithm is not active.

Definition Classes
Algorithm
30. def start(): Unit

Start the algorithm and make it active.

Start the algorithm and make it active. After it returns, the algorithm must be ready to provide answers. Throws AlgorithmActiveException if the algorithm is already active.

Definition Classes
Algorithm
31. def stop(): Unit

Stop the algorithm from computing.

Stop the algorithm from computing. The algorithm is still ready to provide answers after it returns. Throws AlgorithmInactiveException if the algorithm is not active.

Definition Classes
Algorithm
32. val sufficientStatistics: Map[Parameter[_], Seq[Double]]
33. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
34. def toString(): String
Definition Classes
AnyRef → Any
35. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
36. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
37. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )