c

com.cra.figaro.algorithm.learning

SufficientStatisticsFactor

class SufficientStatisticsFactor extends AnyRef

Methods for creating probabilistic factors associated with elements and their sufficient statistics.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SufficientStatisticsFactor
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SufficientStatisticsFactor(parameterMap: Map[Parameter[_], Seq[Double]])

    parameterMap

    Map of parameters to their sufficient statistics. Expectation

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def convertFactor[T](factor: Factor[Double]): Factor[(Double, Map[Parameter[_], Seq[Double]])]
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. def make(elem: Element[_]): List[Factor[(Double, Map[Parameter[_], Seq[Double]])]]

    Create the probabilistic factors associated with an element.

    Create the probabilistic factors associated with an element. This method is memoized.

  14. def makeDependentFactor(cc: ComponentCollection, parentUniverse: Universe, dependentUniverse: Universe, probEvidenceComputer: () ⇒ Double): Factor[(Double, Map[Parameter[_], Seq[Double]])]

    Create the probabilistic factor encoding the probability of evidence in the dependent universe as a function of the values of variables in the parent universe.

    Create the probabilistic factor encoding the probability of evidence in the dependent universe as a function of the values of variables in the parent universe. The third argument is the the function to use for computing probability of evidence in the dependent universe. It is assumed that the definition of this function will already contain the right evidence.

  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  18. def partitionConstraintFactors(factors: List[Factor[Double]]): (List[Factor[Double]], List[Factor[Double]])
  19. val semiring: SufficientStatisticsSemiring
  20. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  21. def toString(): String
    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped