object LogStatistics extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LogStatistics
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  15. def oneSidedTTest(v1: LogStatistics, v2: LogStatistics): Double

    Performs a one-sided t-test for the comparison of v1.logMean and v2.logMean.

    Performs a one-sided t-test for the comparison of v1.logMean and v2.logMean. This compares the smaller mean to the larger mean, i.e. it computes a p-value for min(v1.logMean, v2.logMean) < max(v1.logMean, v2.logMean).

    v1

    Mean, variance, and sample count from first distribution. Requires v1.count > 1.

    v2

    Mean, variance, and sample count from second distribution. Requires v2.count > 1.

    returns

    A p-value for the hypothesis. A small p-value indicates high confidence that the population mean of the sample with lesser mean is less than the population mean of the other sample.

  16. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  17. def toString(): String
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped