
1 
 

Figaro Release Notes 
About Figaro 
Reasoning under uncertainty requires taking what you know and inferring what you don’t know, when 
what you know doesn’t tell you for sure what you don’t know. A well-established approach for 
reasoning under uncertainty is probabilistic reasoning. Typically, you create a probabilistic model over 
all the variables you’re interested in, observe the values of some variables, and query others. There is a 
huge variety of probabilistic models, and new ones are being developed constantly. Figaro is designed to 
help build and reason with the wide range of probabilistic models. 

Developing a new probabilistic model normally requires developing a representation for the model and 
a reasoning algorithm that can draw useful conclusions from evidence, and in many cases also an 
algorithm to learn aspects of the model from data. These can be challenging tasks, making probabilistic 
reasoning require significant effort and expertise. Furthermore, most probabilistic reasoning tools are 
standalone and difficult to integrate into larger programs.  

Figaro is a probabilistic programming language that helps address both these issues. Figaro makes it 
possible to express probabilistic models using the power of programming languages, giving the modeler 
the expressive tools to create all sorts of models. Figaro comes with a number of built-in reasoning 
algorithms that can be applied automatically to new models. In addition, Figaro models are data 
structures in the Scala programming language, which is interoperable with Java, and can be constructed, 
manipulated, and used directly within any Scala or Java program. 

Figaro is extremely expressive. It can represent a wide variety of models, including: 

• directed and undirected models 
• models in which conditions and constraints are expressed by arbitrary Scala functions 
• models involving inter-related objects 
• open universe models in which we don’t know what or how many objects exist 
• models involving discrete and continuous elements 
• models in which the elements are rich data structures such as  trees 
• models with structured decisions 
• models with unknown parameters 

Figaro provides a rich library of constructs to build these models, and provides ways to extend this 
library to create your own model elements. Figaro’s library of reasoning algorithms is also extensible. 
Current built-in algorithms include: 

• Exact inference using variable elimination 
• Belief propagation 
• Lazy factored inference for infinite models 
• Importance sampling 



2 
 

• Metropolis-Hastings, with an expressive language to define proposal distributions 
• Support computation 
• Most probable explanation (MPE) using variable elimination, belief propagation or simulated 

annealing 
• Probability of evidence using importance sampling or belief propagation 
• Particle Filtering 
• Factored frontier 
• Parameter learning using expectation maximization 
• Gibbs sampling 

Figaro provides both regular (the algorithm is run once) and anytime (the algorithm is run until stopped) 
versions of some of these algorithms. In addition to the built-in algorithms, Figaro provides a number of 
tools for creating your own reasoning algorithms. 

Figaro is free and is released under an open-source license (see license file). The public code repository 
for Figaro can also be found at https://github.com/p2t2 

What’s new in Figaro 5.0? 
Figaro 5.0 provides three major new features: 

• Lazy structured factored inference (LSFI) is a new algorithm that integrates our earlier lazy 
factored inference (LFI) in our structured factored inference (SFI) framework. LSFI supports 
inference on large and possibly infinitely recursive models that combine discrete and continuous 
variables. Given a query, it produces lower and upper bounds that converge to the answer to 
the query. To the best of our knowledge, this is the only algorithm that works on such a large 
range of cases. 

• We have improved our Metropolis-Hastings algorithm by amortizing expensive computations 
across many sampling iterations and performing other optimizations. In our tests, we’ve gotten 
up to two orders of magnitude savings in running time compared to the previous version. 

• We have developed a debug tool that can be used to visualize and infer with Figaro programs. 
The tool can be used to examine a program hierarchically following the same structure as used 
in SFI. 

In addition, there are a number of minor improvements: 

• MPE variable elimination and belief propagation added to structured factored inference (SFI). 
• Ability to sample from the joint posterior of several elements using MH or Importance sampling. 
• A new element for a univariate kernel density estimator. 
• Improved simulated annealing 
• New extensions package that build off of the Figaro core language 

o Support for curried Element operations 
• Support for Scala 2.12 
• Minor bug fixes and memory leaks 

https://github.com/p2t2


3 
 

How can I use Figaro as a project dependency? 
If you wish to integrate Figaro's features into your own software project, Figaro is available on Maven 
Central (http://search.maven.org). Shown below are a few examples of how you can add Figaro as a 
dependency to your existing project: 

Simple Build Tool (SBT) Projects 

                libraryDependencies += "com.cra.figaro" %% "figaro" % "5.0.0.0" 

Apache Maven Projects 

<dependency> 
    <groupId>com.cra.figaro</groupId> 
    <artifactId>figaro_2.12</artifactId> 
    <version>5.0.0.0</version> 
</dependency> 

Apache Ivy Projects 

<dependency org="com.cra.figaro" name="figaro_2.12" rev="5.0.0.0" /> 

How do I compile Figaro from source code? 
Figaro is maintained as open source on GitHub. The GitHub project is Probabilistic Programming Tools 
and Techniques (P2T2), located at https://github.com/p2t2. P2T2 currently contains the Figaro sources, 
but we plan to update it with more tools. If you want to see the source code and build Figaro yourself, 
please visit our GitHub site. 

To build Figaro from GitHub source, make a fork of the Figaro repository to your GitHub account, then 
use git’s clone feature to get the source code from your GitHub account to your machine. 

git clone https://github.com/[your-github-username]/figaro.git 

There are several branches available; checkout “master” for the latest stable release or the latest “DEV” 
branch for more cutting edge work and features (this is work in progress and therefore less stable).  

Figaro uses Simple Build Tool (SBT) to manage builds, located at http://www.scala-sbt.org/. Download 
and install SBT, open a command prompt, switch to your newly cloned local Figaro directory, and enter 
this SBT command set: 

 sbt clean compile package publishLocal assembly 

 
This will create Figaro for Scala 2.12; you will find the resulting artifacts in the “target” directory. To run 
the Figaro unit tests, use this SBT command 

 sbt test 

Note that some of the unit tests may not always pass because their results are non-deterministic. 

http://search.maven.org/
https://github.com/p2t2
http://www.scala-sbt.org/


4 
 

How do I run my own Figaro programs without using Simple Build Tool (SBT)? 
While SBT is a useful tool, you may want to manage your own workspace differently. 

To run Figaro, you will first need Scala. The Scala compiler can either be run from the command line or 
within an Integrated Development Environment (IDE). Two IDEs that support Scala development are 
Eclipse and IntelliJ Idea. NetBeans also has a Scala plugin but it does not appear to support recent 
versions of Scala (but that may have changed). This section focuses on how to obtain Scala and Figaro 
and run Scala programs that use Figaro from the command line. If you choose to use an IDE, please see 
the documentation of your IDEs and Scala plugins for details of how to include the Figaro library. 

To get started, download Scala from http://scala-lang.org/download/. You will need Scala version 2.12.2 
or later to run the latest version of Figaro (note Scala 2.11.8 or later is supported as a cross-compiled 
build). Follow the Scala installation instructions at http://scala-lang.org/download/install.html and make 
sure you can run, compile, and execute the “Hello World” program provided in the documentation. 

The next step is to obtain Figaro. The Figaro binary distribution is hosted at the Charles River Analytics, 
Inc. Web site. Go to https://www.cra.com/figaro. The current version, as of August 2017, is 5.0.0.0, and 
is available for Scala 2.12 and Scala 2.11. Always make sure the Figaro version you use matches the Scala 
version you’re using. Each available download link is an installer containing the Figaro jar (jar is the 
Java/Scala format for compiled byte code), examples, documentation, Scaladoc, and source code files. 
Click the appropriate link for your desired Scala version and operating system and run the installer. In 
the distribution, the Figaro jar name ends with “fat”, indicating that this is a fat jar containing all the 
necessary libraries to run Figaro. Using a fat jar simplifies the Scala classpath needed to run Figaro 
programs.  

Optionally, you can add the fully qualified path name of the Figaro jar to your classpath. This can be 
done by adding the Figaro jar to the CLASSPATH environment variable in your operating system. The 
process for editing the CLASSPATH varies from operating system to operating system. You can see 
details about using the PATH and CLASSPATH environment variables in 
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html. 

If the CLASSPATH does not exist yet, create it. It is good practice to include the current working 
directory, so set the CLASSPATH to “.”, then proceed to add the Figaro jar, as in the next step.  

By this point, the CLASSPATH already exists, so we can add the Figaro path to it. For example, on 
Windows 10, if figaro_2.12-5.0.0.0-fat.jar is in the “C:\Users\apfeffer” folder and the CLASSPATH is 
currently equal to “.”, change the CLASSPATH to “C:\Users\apfeffer\figaro_2.12-5.0.0.0-fat.jar;.” 
(replace “5.0.0.0” with the appropriate Figaro version number).  

Now you can compile and run Figaro programs just like any Scala program. Put the Test program below 
in a file named Test.scala. First, let’s assume you followed step 4 and updated the CLASSPATH. 

If you run 

scala Test.scala 

http://scala-lang.org/download/
http://scala-lang.org/download/install.html
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html


5 
 

from the directory containing Test.scala, the Scala compiler will first compile the program and then 
execute it. It should produce the output 1.0. 

If you run 

scalac Test.scala 

(note the c at the end of “scalac”), the Scala compiler runs and produces .class files. You can then 
execute the program by running scala Test from the same directory. 

If you did not follow step 4, you can set the CLASSPATH from the command line using the –cp option. 
For example, to compile and execute Test.scala, assuming figaro_2.12-5.0.0.0-fat.jar is in the 
“C:\Users\apfeffer” folder, you can run 

scala –cp C:\Users\apfeffer\figaro_2.12-5.0.0.0-fat.jar Test.scala 

Here’s the Test program: 

import com.cra.figaro.language._ 
import com.cra.figaro.algorithm.sampling._ 
 
object Test { 
  def main(args: Array[String]) { 
    val test = Constant("Test") 
    val algorithm = Importance(1000, test) 
    algorithm.start() 
    println(algorithm.probability(test, "Test")) 
  } 
} 

This program should output 1.0 when run. 

 


	About Figaro
	What’s new in Figaro 5.0?
	How can I use Figaro as a project dependency?
	How do I compile Figaro from source code?
	How do I run my own Figaro programs without using Simple Build Tool (SBT)?

